ECON 206 December 27, 2010
METU- Department of Economics

LECTURE 10

| SIMPLE REGRESSION MODEL - 11 I
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|. Mean and Variance of the Dependent Variable Y
The dependent variable Y has mean
E(Y) =56y + B X
and variance
Var(Y) =E[Y,~E(Y,)| =E@?)=0"
1. Let us show that the mean of Y;is B+ B X;. 2

By definition the mean of Y, is its expected value.

Given that Y, =, + B X, +U,. Taking the expected values we get

EV)=E[ B+ B X +U]
E(Yp=E[4,+5X ]+E[u]
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Given that g and g, are parameters and by Assumption 2 the values

of X¢’s are a set of fixed numbers (in the process of hypothetical
sampling)

E[ﬂo+ﬂlxt}=ﬁo+ﬂlxt
Furthermore, by Assumption 3, E(u,)=0.
Therefore,
E(YD =46y + B X
2. Let us now show that the variance of Y; is o
Var(Y,)=E :Yt - E(Yt)f

Var(Yy)=E :ﬂo + O X U= f +ﬂ1xtf
Var(Y,) = E:ut]2

By Assumption 4, the u,’s are homoscedastic, that is, they have the
constant variance o2

Var(Y,) = E[ut}2 =02

Il. Ordinary Least Squares (OLS) Estimation

e The two-variable population regression function is given by
Yt :ﬁo+:81xt+ut’
but we do not observe it.

e Hence we estimate it from the sample regression function
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Y =B+ B X+, .
%’{—/
Yy
or Y, =Y, +U.
e \We can rewrite the sample regression function as

Gt :Yt _YAt :Yt_:éo_,élxt-

e In other words, the residuals are the differences between the
actual and the estimated Y, values.

e With T observations, we want to choose /3, and /4, such that the

T T .
sum of the residuals is minimized: > G, =>" (Y, -Y,).
=1 =1

SRF

X, X, X, X

FIGURE 3.1 Least-squares criterion.

e this turns out not to be a very good rule because some residuals
are negative and some are positive (and they would cancel each
other), and
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e all residuals have the same weight (importance) even though
some are small and some are large.

v To overcome these problems, we use the squares of the

residuals instead of their own values.

Ordinary Least Squares (OLS) criterion:
L ~ 2 ~\2 a2
Minimize ZUt :Z(Yt—Yt) :Z(Yt—,BO—,let)
wrt £, and S,

The necessary condition for a minimum is that the first derivatives
of the function be equal to zero.

Partial differentiation yields

~2
LI _ o5 (v~ B, - AX) =0 (1)
o,
A 2
LI _ o5 (v, - B, - BX )X, =0 )
0B,
From (1)

Z(Yt—,éo—,[;’lxt):O
T .~ AT
QYT Ly =) X = 0
t=1 t=1
A~ T - T
T, = ZYt _1812 Xt
= =
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From (2)
Z(Yt _:éo _ﬁlxt)xt =0
T ~ T AT
ZYtXt _ﬂoz X _ﬁlz th =
t=1 t=1 t=1
T ~ T AT
tZ:;,tht =ﬂozxt +ﬂlz th
T
;th - Y-4X }Zxﬁﬁlzx

TX

T _ _ _ AT

Y X =TYX =BT XX+ X2
t=1

T _ _ AT ~ _

Y X -TY.X = 3> X2~ BT.X.X

t=1 t=1

T _ ~| T _
Ztht TY.X —ﬁ{z thT.xz}
t=1 =1

TY.X

M—|

= :81 = t:%
Xt

g

Note that

T T T T T _
tgxzzz(xt =Y XE-2Y XK +Y X

t=1

_ _ T _ _
=Y X2-2X Y X 4T X2=Y X2 -2TX2 4T X2
t=1 t=1

T _
=" XZ-TX?
t=1

and
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T T _ _ T _ o
t=1 t=1 t=1

_ T _T T
t=1 t=1 t=1 t=1

T o T o
= Z XY= XTY =YTX +TYX = Z XY =TXY
t=1 t=1

M-

Hence the OLS estimator can also be written as in mean-deviation
form as follows:

A. Mean of ,BA’l

We assume that we draw repeated samples of size T from the
population of Y and X, and for each sample we estimate the

parameters ﬁAO and ,5’1. This is known as hypothetical repeated
sampling procedure. If all the possible samples are taken, then the
mean value of B will be its expected value, (mean g)=E(4,). To

find the value of the mean in terms of the observations of our
sample of Y and X we work as follows.

M—|

X Yt

Il

We found that 3, =1

X2

M—|

0N
=

Substituting y, =Y, —Y we obtain
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T T T
XYe D %M=Y) D xYe YD x

M—|

~

p=H _i= _= 3
1T, LIS LI S
2 % 2X 22X QX
t=1 t=1 t=1 t=1

But by definition, the sum of the deviations of a variable from its

T
mean is identically equal to zero, » x =o. Therefore
t=1

T

DRAEE «

p=7—=2 |\
zxtz t=1 thz
=] =1

By assumption 2 of the method of least squares, the values of X are
a set of fixed values, which do not change from sample to sample.

Consequently the ratio Txt will be constant from sample to

> ¥
t=1
sample, and if we denote the ratio by a; we may write the
~ ~ T
estimator 4, in the form 8 =>"ayY,.
t=1

By substituting the value of Y, =4+ X,+Uu;and rearranging the
factors we find

.~ T
ﬂlztz_;at(ﬂo+ﬂ1xt+ut)
T T T
ﬁlzﬂo;aﬁﬂl;atxﬁgatut

T T
Note (and show) that > a, =0 and ) aX;=1.
t=1 t=1

Therefore, the equation above reduces to
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A T
:Blzﬂl‘i'tz_;,atut

which implies that Ais a linear estimator because it is a linear

function of Y; actually it is a weighted average of Y; with a; serving
as the weights.

Taking expected values yields

aéhamépﬁm]

The significance of the assumption of constant X values is seen in
the above manipulations, in that the operation of taking expected
values is applied to u and Y values but not to X.

Since B (the true population parameter) is constant, we can
write E(f,) = . Finally using assumption 3, we have E[u, |=0.

Hence, the equation reduces to

E(B) =4

mean of 4

which implies that the mean of OLS estimate ,5’1is equal to the true
value of the population parameter g3, .

This implies that theﬁlis an unbiased estimator.
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B. Variance of ﬁA’l

2

It can be proved that Var(4,) = E{ﬁl— E(,él)}2 _ E[,B’l—ﬂlf =2

> X
t=1

- T
To show this, recall that we established /g =) aY, where
t=1

a = Txt = constant weights in the process of hypothetical repeated
2

sampling.

Therefore,
~ T T
Var(p,) :Var(tz_ll aY,)= tzllatz Var(Y,)

given that a, = Txt are constant weights, independent of the values

D X
t=1

of Y, by Assumption 2.

However, recall that Var(Y,) =o?.

Therefore,
i 2
~ T T 2 Xt 2
Val’(ﬂl):azZaIZZGZ Z X 5 R J i = NE TO'
t=1 t=1( T T 2
MRS
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C. Mean of ,5’0

In the last lecture, we have established that

~

:Bo =Y_—ﬁ’\1)z

~ T
Substituting £, =>"aY, we obtain:
t=1

Taking Y, as the common factor, we may write:

~ T _
By :;{Tl_ Xat}(t

Here, denoting Tl_ Xa, =b,, we can write the equation as
~ T
ﬂo = ;tht

which implies that /3,is a linear estimator.

Taking expected values
~ T 1 o
E(5,) :;{T_ Xat}E(Yt)
giventhat T, X and a, are constant from sample to sample.
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In the last lecture, we have derived that E(Y,) =3, + B X;.

Therefore

~ T _1 _
E(ﬁo):; T_Xat (B, + B Xt)
E(ﬁ,\o):g @_xa’(ﬂ(ﬁ'%_xatﬁlxt

LT ,3 T Ty _ 1
E(ﬁo)ZZTO_XﬂoZat+ﬂlz%_xﬁlzatxt

t=1 = =1 t=1
0 1

E(ﬁ’\o) ::Bo +181>Z _ﬁlx
E(ﬁo):ﬂo

Hence /3,is an unbiased estimator of 4.

~ T
A similar proof can be done using the notation 4, => hY,, with the
t=1

T T T T
help of t;b[ =1 andtzllbtxt =0 (Show that t;b[ =1 and;blxt =0).

D. Variance of Bo

We established that

gl
=2 T Xa M

t=1

Therefore

Instructor: H. Ozan ERUYGUR e-mail: oeruygur@gmail.com 11



ECON 206 December 27, 2010
METU- Department of Economics

Var(ﬁo) =Var i Yt}

t=1

Y, >y

t=1

Var(ﬁo) =Var

Var(ﬂAO):ang[2

=1g
Thus, ] ]
~ 1 2)2 T _ T
Var(f,) =0 T—TZaﬁXzZat2
I t=1 =
~ _1 2)2 T _ T ]
Var(f,) =0 T—TZaﬁXzZat2
i t=1 t=1 ]

T T
Since Y a =0and > a?= L we obtain
t=1 t=1

> %2

t=1

Var(ﬁAo):a2 —+ :>Var(ﬂAo):c72 t

T T _
Recall that Y x?=>X#-TX?.  This  implies that
= =]

T _ T -~
> xF+TX2=%" X¢. Hence, the variance of fjis obtained as
t=1 t=1

follows:
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Var(§,)=c? L —
Ty X
t=1

E. Covariance of ﬁoand ,31

COV(ﬁO,Bl) =E :ﬁo - E(,Bo): :ﬁl o E(ﬁ1):

Cov(f,, ) =E| B, -E(B,) || B -E(B)

%f_/ (S —]
~X (A=) L P
| Why?Seebelow! |

COV(ﬂAO'B\l) =E :_X(ﬁl - ﬂl):ll:ﬁl - ,31]

Cov(ﬂ’\oiﬁl) =-X.E |:/B\1 - :81:|2
Var?,él)
COV(ﬁAouél) = _X-Var(ﬁl)
o2

— COV(,&O,,@) =-X

T 2
2
Obtaining the covariance expression, we have used the following
equality: ,30 — E(ﬁo) = —)?(,31 — f3,). Let us show how we can obtain

this relationship, below.
Recall that:

B, =Y — B, X , which yields E(3,) =Y — E(/3,)X.Hence, we get:
E(,éo) :Y__ﬂli
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Therefore,

By =Y - BX

E()=Y - BX

By —E(B) =-BX+BX
= B, —E(B,) =—X(B,- B)
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